Bayesian Networks in the Classification of Multispectral and Hyperspectral Remote Sensing Images

نویسندگان

  • Cristina Solares
  • Ana Maria Sanz
چکیده

In this paper we study the application of bayesian network models to classify multispectral and hyperspectral remote sensing images. Different models of bayesian networks as: Naive Bayes, Tree Augmented Naive Bayes, Forest Augmented Naive Bayes and General Bayesian Networks, are applied in the classification of hyperspectral data. In addition, several bayesian multi-net models are applied in the classification of multispectral data. A comparison of the results obtained with the different classifiers is done. Key–Words: Bayesian networks, Bayesian network classifiers, Multispectral image classification, Hyperspectral image classification, Bayesian multi-nets classifiers.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Different Bayesian Network Models in the Classification of Remote Sensing Images

In this paper we study the application of Bayesian network models to classify multispectral and hyperspectral remote sensing images. Different models of Bayesian networks as: Naive Bayes (NB), Tree Augmented Naive Bayes (TAN) and General Bayesian Networks (GBN), are applied to the classification of hyperspectral data. In addition, several Bayesian multi-net models: TAN multi-net, GBN multi-net ...

متن کامل

Overlap-based feature weighting: The feature extraction of Hyperspectral remote sensing imagery

Hyperspectral sensors provide a large number of spectral bands. This massive and complex data structure of hyperspectral images presents a challenge to traditional data processing techniques. Therefore, reducing the dimensionality of hyperspectral images without losing important information is a very important issue for the remote sensing community. We propose to use overlap-based feature weigh...

متن کامل

Remote Sensing and Land Use Extraction for Kernel Functions Analysis by Support Vector Machines with ASTER Multispectral Imagery

Land use is being considered as an element in determining land change studies, environmental planning and natural resource applications. The Earth’s surface Study by remote sensing has many benefits such as, continuous acquisition of data, broad regional coverage, cost effective data, map accurate data, and large archives of historical data. To study land use / cover, remote sensing as an effic...

متن کامل

Hyperspectral Image Classification Based on the Fusion of the Features Generated by Sparse Representation Methods, Linear and Non-linear Transformations

The ability of recording the high resolution spectral signature of earth surface would be the most important feature of hyperspectral sensors. On the other hand, classification of hyperspectral imagery is known as one of the methods to extracting information from these remote sensing data sources. Despite the high potential of hyperspectral images in the information content point of view, there...

متن کامل

Combining of Magnitude and Direction of Change Indices to Unsupervised Change Detection in Multitemporal Multispectral Remote Sensing Images

In remote sensing, image-based change detection techniques, analyze two images acquired over the same area at different times t1 and t2 to identify the changes occurred on the Earth's surface. Change detection approaches are mainly categorized as supervised and unsupervised. Generating the change index is a key step for change detection in multi-temporal remote sensing images. Unsupervised chan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007